Chapter 10: Vector Algebra

Overview

This page provides an Overview of Chapter Wise Notes for CBSE Class 12. Key topics covered: Exam Weightage & Blueprint, Last 24-Hour Checklist, Basic Concepts of Vectors, Position Vector & Components, Vector Operations, Section Formula, Dot Product (Scalar Product), Cross Product (Vector Product). All content is aligned with the NCERT syllabus for Board Exam preparation.

Complete Board Exam Focused Notes with All Formulas & PYQs

Exam Weightage & Blueprint

Total: ~14 Marks

Vector Algebra is a high-scoring chapter with direct formula-based questions. Master dot product, cross product, and section formula for guaranteed marks!

Question Type Marks Frequency Focus Topic
MCQ 1 Very High Magnitude, Unit Vector, Direction Cosines
Short Answer (2M) 2 Very High Dot Product, Position Vector, Section Formula
Short Answer (3M) 3 High Cross Product, Angle Between Vectors
Long Answer (5M) 5 Very High Area of Triangle/Parallelogram, Collinearity

Last 24-Hour Checklist

Basic Concepts (Must Know!)

Products (Very Important!)

Basic Concepts of Vectors

Definition: A quantity that has both magnitude and direction is called a vector.

Notation: $\vec{AB}$ or $\vec{a}$ (bold) or $\overrightarrow{AB}$

Types of Vectors

Zero Vector

$\vec{0}$ or $\vec{AA}$

Magnitude = 0, direction undefined

Unit Vector

$|\vec{a}| = 1$

$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

Collinear Vectors

$\vec{b} = \lambda\vec{a}$

Parallel vectors

Position Vector & Components

Position Vector of P(x, y, z): $$\vec{OP} = \vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$ Magnitude: $$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$
Unit Vectors along Axes:
$\mathbf{i}$ = unit vector along x-axis
$\mathbf{j}$ = unit vector along y-axis
$\mathbf{k}$ = unit vector along z-axis
Properties: $|\mathbf{i}| = |\mathbf{j}| = |\mathbf{k}| = 1$
$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$ (mutually perpendicular)

Direction Cosines & Direction Ratios

If $\vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $|\vec{r}| = r$, then:
Direction Cosines: $l = \cos\alpha = \frac{x}{r}$, $m = \cos\beta = \frac{y}{r}$, $n = \cos\gamma = \frac{z}{r}$
Important Property: $l^2 + m^2 + n^2 = 1$
Direction Ratios: $a = x, b = y, c = z$ (proportional to direction cosines)
Relationship: $$l = \frac{a}{\sqrt{a^2+b^2+c^2}}, \quad m = \frac{b}{\sqrt{a^2+b^2+c^2}}, \quad n = \frac{c}{\sqrt{a^2+b^2+c^2}}$$

Vector Operations

Addition of Vectors

Triangle Law: If $\vec{AB}$ and $\vec{BC}$ are two vectors, then: $$\vec{AB} + \vec{BC} = \vec{AC}$$ Parallelogram Law: If $\vec{a}$ and $\vec{b}$ are adjacent sides of a parallelogram, their sum is the diagonal.
Properties of Vector Addition:
1. Commutative: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
2. Associative: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
3. Additive Identity: $\vec{a} + \vec{0} = \vec{a}$
4. Additive Inverse: $\vec{a} + (-\vec{a}) = \vec{0}$

Scalar Multiplication

If $\vec{a}$ is a vector and $\lambda$ is a scalar, then:
$|\lambda\vec{a}| = |\lambda||\vec{a}|$
Direction same as $\vec{a}$ if $\lambda > 0$, opposite if $\lambda < 0$
$\lambda\vec{a} = \lambda(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = \lambda x\mathbf{i} + \lambda y\mathbf{j} + \lambda z\mathbf{k}$

Component Form Operations

If $\vec{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\vec{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$, then:

Addition: $\vec{a} + \vec{b} = (a_1+b_1)\mathbf{i} + (a_2+b_2)\mathbf{j} + (a_3+b_3)\mathbf{k}$

Subtraction: $\vec{a} - \vec{b} = (a_1-b_1)\mathbf{i} + (a_2-b_2)\mathbf{j} + (a_3-b_3)\mathbf{k}$

Equal Vectors: $\vec{a} = \vec{b}$ if and only if $a_1 = b_1, a_2 = b_2, a_3 = b_3$

Vector Joining Two Points

Vector from $P_1(x_1, y_1, z_1)$ to $P_2(x_2, y_2, z_2)$: $\vec{P_1P_2} = (x_2-x_1)\mathbf{i} + (y_2-y_1)\mathbf{j} + (z_2-z_1)\mathbf{k}$ $|\vec{P_1P_2}| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$

Section Formula

Internal Division: If R divides PQ internally in ratio m:n, then: $\vec{OR} = \frac{m\vec{OQ} + n\vec{OP}}{m+n}$
External Division: If R divides PQ externally in ratio m:n, then: $\vec{OR} = \frac{m\vec{OQ} - n\vec{OP}}{m-n}$
Midpoint Formula: (when m = n = 1) $\vec{OR} = \frac{\vec{OP} + \vec{OQ}}{2}$
Memory Aid:
Internal: "+" in numerator, "+" in denominator
External: "-" in numerator, "-" in denominator
For midpoint: Just average the position vectors!
Common Board Question Pattern:
Given three points A, B, C. Find position vector of point dividing AB in ratio 2:1.
Solution Method:
1. Write position vectors of A and B
2. Apply section formula: $\vec{r} = \frac{2\vec{b} + 1\vec{a}}{2+1}$
3. Simplify to get answer

Dot Product (Scalar Product)

Definition: The dot product of two vectors $\vec{a}$ and $\vec{b}$ is: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$ where $\theta$ is the angle between $\vec{a}$ and $\vec{b}$, $0 \leq \theta \leq \pi$
Component Form: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$

Properties of Dot Product

Property Formula
Commutative $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
Distributive $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
Scalar Multiple $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b})$
Self Dot Product $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
Unit Vectors $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$
Perpendicular $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$

Important Results

1. Angle Between Vectors: $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

2. Perpendicular Vectors: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

3. Parallel Vectors: $\vec{a} \parallel \vec{b} \iff \vec{a} = k\vec{b} \text{ or } \theta = 0 \text{ or } \pi$
Quick Checks:
If $\vec{a} \cdot \vec{b} = 0$ → vectors are perpendicular
If $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|$ → vectors are parallel (same direction)
If $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$ → vectors are parallel (opposite direction)

Projection of Vector

Projection of $\vec{a}$ on $\vec{b}$: $\text{proj}_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = |\vec{a}|\cos\theta$

Cross Product (Vector Product)

Definition: The cross product of two vectors $\vec{a}$ and $\vec{b}$ is: $\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta\, \hat{n}$ where $\hat{n}$ is a unit vector perpendicular to both $\vec{a}$ and $\vec{b}$ (right-hand rule)
Component Form (Determinant Method): $\vec{a} \times \vec{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $= (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$

Properties of Cross Product

Property Formula
Not Commutative $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$
Distributive $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
Scalar Multiple $k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b})$
Self Cross $\vec{a} \times \vec{a} = \vec{0}$
Unit Vectors $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
Reverse Order $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$, $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$, $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$
Memory Trick for $\mathbf{i}, \mathbf{j}, \mathbf{k}$ Cross Products:
Cyclic order (clockwise): $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
Anti-cyclic (reverse): Just add negative sign!

Geometric Applications

1. Area of Triangle with vertices A, B, C: $\text{Area} = \frac{1}{2}|\vec{AB} \times \vec{AC}|$

2. Area of Parallelogram with adjacent sides $\vec{a}$ and $\vec{b}$: $\text{Area} = |\vec{a} \times \vec{b}|$

3. Unit Vector Perpendicular to both $\vec{a}$ and $\vec{b}$: $\hat{n} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Parallel Vectors: $\vec{a} \parallel \vec{b}$ if and only if $\vec{a} \times \vec{b} = \vec{0}$

Solved Examples (Board Marking Scheme)

Q1. Find the unit vector in the direction of $\vec{a} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ (2 Marks)

Step 1: Find Magnitude 1 Mark

$|\vec{a}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}$

Step 2: Calculate Unit Vector 1 Mark

$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{2\mathbf{i} + 3\mathbf{j} + \mathbf{k}}{\sqrt{14}}$

$= \frac{2}{\sqrt{14}}\mathbf{i} + \frac{3}{\sqrt{14}}\mathbf{j} + \frac{1}{\sqrt{14}}\mathbf{k}$

Q2. Find the angle between vectors $\vec{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\vec{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}$ (3 Marks)

Step 1: Calculate Dot Product 1 Mark

$\vec{a} \cdot \vec{b} = (1)(1) + (1)(-1) + (1)(1) = 1 - 1 + 1 = 1$

Step 2: Find Magnitudes 0.5 Mark

$|\vec{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$

$|\vec{b}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$

Step 3: Apply Formula 1 Mark

$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{1}{\sqrt{3} \times \sqrt{3}} = \frac{1}{3}$

Step 4: Find Angle 0.5 Mark

$\theta = \cos^{-1}\left(\frac{1}{3}\right)$

Q3. Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\vec{b} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ (3 Marks)

Solution: 3 Marks

$\vec{a} \times \vec{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2 \end{vmatrix}$

$= \mathbf{i}(1 \times (-2) - 3 \times 5) - \mathbf{j}(2 \times (-2) - 3 \times 3) + \mathbf{k}(2 \times 5 - 1 \times 3)$

$= \mathbf{i}(-2 - 15) - \mathbf{j}(-4 - 9) + \mathbf{k}(10 - 3)$

$= -17\mathbf{i} + 13\mathbf{j} + 7\mathbf{k}$

Q4. Find the area of triangle with vertices A(1, 1, 2), B(2, 3, 5), C(1, 5, 5) (5 Marks)

Step 1: Find Vectors 1 Mark

$\vec{AB} = (2-1)\mathbf{i} + (3-1)\mathbf{j} + (5-2)\mathbf{k} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

$\vec{AC} = (1-1)\mathbf{i} + (5-1)\mathbf{j} + (5-2)\mathbf{k} = 4\mathbf{j} + 3\mathbf{k}$

Step 2: Calculate Cross Product 2 Marks

$\vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3 \end{vmatrix}$

$= \mathbf{i}(6-12) - \mathbf{j}(3-0) + \mathbf{k}(4-0)$

$= -6\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$

Step 3: Find Magnitude 1 Mark

$|\vec{AB} \times \vec{AC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$

Step 4: Calculate Area 1 Mark

Area of triangle $= \frac{1}{2}|\vec{AB} \times \vec{AC}| = \frac{\sqrt{61}}{2}$ sq. units

Previous Year Questions (PYQs)

2023 (1 Mark MCQ): The value of $\mathbf{i} \cdot (\mathbf{j} \times \mathbf{k}) + \mathbf{j} \cdot (\mathbf{k} \times \mathbf{i}) + \mathbf{k} \cdot (\mathbf{i} \times \mathbf{j})$ is:
(A) 0   (B) 1   (C) 3   (D) -1
Ans: (C) 3
Solution: $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, so $\mathbf{i} \cdot \mathbf{i} = 1$. Similarly each term = 1. Total = 3
2022 (2 Marks): If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, prove that $\vec{a}$ and $\vec{b}$ are perpendicular.
Solution:
$|\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$
$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$
$|\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$
$4\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \cdot \vec{b} = 0$
Hence, $\vec{a} \perp \vec{b}$
2021 (3 Marks): Show that the points A(2, 3, -4), B(1, -2, 3), and C(3, 8, -11) are collinear.
Solution:
$\vec{AB} = -\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}$
$\vec{AC} = \mathbf{i} + 5\mathbf{j} - 7\mathbf{k} = -\vec{AB}$
Since $\vec{AC} = -1 \times \vec{AB}$, vectors are collinear.
Hence A, B, C are collinear.
2020 (5 Marks): Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\vec{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
Solution Steps:
1. Find $\vec{a} + \vec{b} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$
2. Find $\vec{a} - \vec{b} = -\mathbf{j} - 2\mathbf{k}$
3. Calculate $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$ using determinant
4. Find magnitude of the cross product
5. Divide by magnitude to get unit vector

Exam Strategy & Mistake Bank

Common Mistakes

Mistake 1: Confusing dot product with cross product. Dot product gives scalar, cross product gives vector!
Mistake 2: Wrong sign in cross product: $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ (not commutative!)
Mistake 3: Forgetting to take $\frac{1}{2}$ in triangle area formula. Parallelogram = full, Triangle = half!
Mistake 4: Using external section formula when internal is required (or vice versa). Check the ratio carefully!
Mistake 5: Wrong determinant expansion in cross product. Always expand along first row!
Mistake 6: Not checking $l^2 + m^2 + n^2 = 1$ for direction cosines.

Scoring Tips

Tip 1: Always write formula first, then substitute values. Shows proper method!
Tip 2: For cross product, write the determinant clearly. Partial marks even if calculation wrong!
Tip 3: In angle problems, always mention $0 \leq \theta \leq \pi$ for dot product, $0 \leq \theta \leq \pi$ for cross.
Tip 4: Show unit vector calculation step: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$ explicitly.
Tip 5: For collinearity, show $\vec{AB} = k\vec{BC}$ or use cross product = 0.
Tip 6: Write final answer in simplest form with proper vector notation.

Formula Sheet (Must Remember!)

Basic Formulas

1. Position Vector: $\vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

2. Magnitude: $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$

3. Unit Vector: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

4. Direction Cosines: $l = \frac{x}{r}, m = \frac{y}{r}, n = \frac{z}{r}$ where $l^2 + m^2 + n^2 = 1$

5. Vector Joining Points: $\vec{P_1P_2} = (x_2-x_1)\mathbf{i} + (y_2-y_1)\mathbf{j} + (z_2-z_1)\mathbf{k}$

Section Formula

6. Internal Division (m:n): $\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}$

7. External Division (m:n): $\vec{r} = \frac{m\vec{b} - n\vec{a}}{m-n}$

8. Midpoint: $\vec{r} = \frac{\vec{a} + \vec{b}}{2}$

Dot Product

9. $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$

10. $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$

11. Angle: $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

12. Projection: $\text{proj}_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

13. Perpendicular: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

Cross Product

14. $\vec{a} \times \vec{b} = |\vec{a}||\vec{b}|\sin\theta\, \hat{n}$

15. $\vec{a} \times \vec{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

16. Parallel: $\vec{a} \parallel \vec{b} \iff \vec{a} \times \vec{b} = \vec{0}$

17. Area of Triangle: $\frac{1}{2}|\vec{AB} \times \vec{AC}|$

18. Area of Parallelogram: $|\vec{a} \times \vec{b}|$

Unit Vector Relations

19. $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$

20. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$

Important Theorems & Results

Cauchy-Schwarz Inequality: $|\vec{a} \cdot \vec{b}| \leq |\vec{a}||\vec{b}|$
Triangle Inequality: $|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$
Collinearity Condition:
Points A, B, C are collinear if and only if:
$\vec{AB} = k\vec{BC}$ for some scalar k, OR
$\vec{AB} \times \vec{AC} = \vec{0}$, OR
$\vec{AB} + \vec{BC} = \vec{AC}$

Practice Problems (Self-Assessment)

Level 1: Basic (1-2 Marks Each)

Q1. Find the magnitude of $\vec{a} = 3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k}$

Answer: $|\vec{a}| = \sqrt{9+4+36} = 7$

Q2. If $\vec{a} \cdot \vec{b} = 0$ and $|\vec{a}| = 3$, $|\vec{b}| = 4$, what is the angle between them?

Answer: $90^\circ$ (perpendicular)

Q3. Find $\mathbf{i} \times (\mathbf{j} + \mathbf{k})$

Answer: $\mathbf{k} - \mathbf{j}$

Level 2: Intermediate (3-4 Marks Each)

Q4. Show that vectors $\vec{a} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ and $\vec{b} = -4\mathbf{i} + 6\mathbf{j} - 8\mathbf{k}$ are parallel.

Hint: Show $\vec{b} = -2\vec{a}$

Q5. Find the position vector of point dividing join of A(1,2,3) and B(3,4,5) in ratio 2:1 internally.

Hint: Use section formula with m=2, n=1

Q6. If $|\vec{a}| = 3$, $|\vec{b}| = 4$, and $\vec{a} \cdot \vec{b} = 6$, find the angle between them.

Answer: $\theta = \cos^{-1}(1/2) = 60^\circ$

Level 3: Advanced (5-6 Marks Each)

Q7. Find the area of parallelogram whose adjacent sides are $\vec{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\vec{b} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$

Hint: Area = $|\vec{a} \times \vec{b}|$

Q8. Prove that if $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$

Hint: Express $\vec{c} = -(\vec{a} + \vec{b})$ and expand

Q9. Find a unit vector perpendicular to the plane containing vectors $\vec{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\vec{b} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$

Hint: Find $\vec{a} \times \vec{b}$, then divide by its magnitude

Quick Revision Tips (1 Day Before Exam)

Must Revise Topics

Formulas to Memorize:

  1. Magnitude formula
  2. Unit vector formula
  3. Direction cosines (3 formulas)
  4. Section formula (internal & external)
  5. Dot product (2 forms)
  6. Cross product (determinant form)
  7. Area formulas (triangle & parallelogram)

Common Question Types:

  1. Find unit vector (2M)
  2. Angle between vectors (3M)
  3. Prove perpendicular (3M)
  4. Area of triangle (5M)
  5. Collinearity proof (3M)
  6. Section formula (2M)

Time Management Per Question

1 Mark (MCQ) = 1-2 minutes
2 Marks = 3-4 minutes
3 Marks = 5-6 minutes
5 Marks = 8-10 minutes

Total Vector Questions in Paper: Usually 3-4 questions = 10-14 marks

Exam Day Checklist

Before Starting Vector Questions:

  • Read question carefully - Is it dot or cross product?
  • Check if unit vector or magnitude is asked
  • For area questions, identify if triangle or parallelogram
  • For section formula, check internal or external division
  • Underline key words: perpendicular, parallel, collinear, angle

While Solving:

  • Write formula first, then substitute values
  • Show all calculation steps clearly
  • For determinant, expand step-by-step
  • Simplify radicals properly (√12 = 2√3)
  • Write vector notation correctly with arrows or bold
  • Box or underline final answer

Final Check:

  • Did you write correct formula?
  • Are calculations correct? (recheck once)
  • For area, did you apply $\frac{1}{2}$ if triangle?
  • Is answer in simplest form?
  • Proper units mentioned if required?
  • Vector notation used throughout?
? Chapter 9 Chapter 11 ?
Back