Direction Cosines & Direction Ratios
Direction Cosines (DCs): If a line makes angles $\alpha, \beta, \gamma$
with x, y, z axes respectively, then $l = \cos\alpha, m = \cos\beta, n = \cos\gamma$ are
called direction cosines.
Relation: $l^2 + m^2 + n^2 = 1$
Direction Ratios (DRs): Any three numbers $a, b, c$ proportional to
direction cosines $l, m, n$.
$\frac{l}{a} = \frac{m}{b} = \frac{n}{c} = k$
Finding DCs from DRs:
$$l = \pm \frac{a}{\sqrt{a^2+b^2+c^2}}, \quad m = \pm \frac{b}{\sqrt{a^2+b^2+c^2}}, \quad n
= \pm \frac{c}{\sqrt{a^2+b^2+c^2}}$$
Direction Ratios of line joining two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2,
z_2)$:
$a = x_2 - x_1, \quad b = y_2 - y_1, \quad c = z_2 - z_1$