Exam Weightage & Blueprint
Total: ~8-10 MarksThis chapter forms the foundation of Calculus. Continuity and Differentiability concepts are essential for Integrals and Differential Equations.
| Question Type | Marks | Frequency | Focus Topic |
|---|---|---|---|
| MCQ | 1 | High | Points of Discontinuity, Product/Chain Rule |
| Short Answer (2M) | 2 | Medium | Logarithmic Differentiation, Parametric Form |
| Short Answer (3M) | 3 | High | Testing Continuity, Second Order Derivatives |
| Long Answer | 5 | Medium | Implicit Differentiation, Successive Differentiation |
Last 24-Hour Checklist
Continuity
Discontinuity of a Function
A function is discontinuous at $x = c$ if:
- $\lim_{x \to c^-} f(x)$ or $\lim_{x \to c^+} f(x)$ (or both) does not exist.
- $\lim_{x \to c^-} f(x) \neq \lim_{x \to c^+} f(x)$.
- $\lim_{x \to c} f(x) \neq f(c)$.
(i) Constant function, (ii) Identity function, (iii) Polynomial function, (iv) Modulus function, (v) Sine and cosine functions, (vi) Exponential function.
Differentiability
Right-hand derivative: $Rf'(a) = \lim_{h \to 0^+} \frac{f(a+h)-f(a)}{h}$
Left-hand derivative: $Lf'(a) = \lim_{h \to 0^-} \frac{f(a+h)-f(a)}{h}$
And $Rf'(a) = Lf'(a)$ (a finite value).
Standard Derivatives Table
| Function $f(x)$ | Derivative $f'(x)$ | Function $f(x)$ | Derivative $f'(x)$ |
|---|---|---|---|
| $x^n$ | $nx^{n-1}$ | $\sin x$ | $\cos x$ |
| $\cos x$ | $-\sin x$ | $\tan x$ | $\sec^2 x$ |
| $\cot x$ | $-\csc^2 x$ | $\sec x$ | $\sec x \tan x$ |
| $\csc x$ | $-\csc x \cot x$ | $\sin^{-1} x$ | $\frac{1}{\sqrt{1-x^2}}$ |
| $\cos^{-1} x$ | $\frac{-1}{\sqrt{1-x^2}}$ | $\tan^{-1} x$ | $\frac{1}{1+x^2}$ |
| $\cot^{-1} x$ | $\frac{-1}{1+x^2}$ | $\sec^{-1} x$ | $\frac{1}{|x|\sqrt{x^2-1}}$ |
| $\csc^{-1} x$ | $\frac{-1}{|x|\sqrt{x^2-1}}$ | $a^x$ | $a^x \log_e a$ |
| $e^x$ | $e^x$ | $\log_e x$ | $1/x$ $(x > 0)$ |
| $\log_a x$ | $\frac{1}{x \log_e a}$ | $|x|$ | $x/|x|$, $x \neq 0$ |
Some Properties & Rules of Derivatives
Sum/Difference Rule
$(u \pm v)' = u' \pm v'$
Product Rule
$(uv)' = u'v + uv'$
Quotient Rule
$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, v \neq 0$
Chain Rule
$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$
If $y = [u(x)]^{v(x)}$, take $\log$ on both sides:
$\log y = v(x) \log[u(x)]$
$\frac{1}{y} \frac{dy}{dx} = v'(x) \log u(x) + v(x) \frac{u'(x)}{u(x)}$
Special Differentiation Types
1. Implicit Function
Functions where $x$ and $y$ are mixed and $y$ cannot be explicitly expressed in terms of $x$. Differentiate both sides w.r.t $x$ and solve for $dy/dx$.
2. Parametric Function
If $x = f(t)$ and $y = g(t)$, then: $$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$
3. Second Order Derivative
Let $y = f(x)$, then $\frac{dy}{dx} = f'(x)$.
Differentiating again: $\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} = f''(x)$
Solved Examples (Board Marking Scheme)
Q1. Find $dy/dx$ if $y = \cos(\sin x^2)$. (2 Marks)
$\frac{dy}{dx} = -\sin(\sin x^2) \cdot \frac{d}{dx}(\sin x^2)$.
$\frac{dy}{dx} = -\sin(\sin x^2) \cdot \cos x^2 \cdot 2x$.
$\frac{dy}{dx} = -2x \cos x^2 \sin(\sin x^2)$.
Q2. If $y = e^x \sin x$, prove that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$. (4 Marks)
$\frac{dy}{dx} = e^x \sin x + e^x \cos x = e^x(\sin x + \cos x)$.
$\frac{d^2y}{dx^2} = e^x(\sin x + \cos x) + e^x(\cos x - \sin x) = 2e^x \cos x$.
LHS: $2e^x \cos x - 2[e^x(\sin x + \cos x)] + 2(e^x \sin x)$
$= 2e^x \cos x - 2e^x \sin x - 2e^x \cos x + 2e^x \sin x = 0$. (Hence Proved)
Previous Year Questions (PYQs)
Ans: $x^2+x-6 = (x+3)(x-2) = 0 \Rightarrow x = -3, 2$.
Ans: Let $u = \sin^2 x, v = e^{\cos x}$. $\frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{2\sin x \cos x}{-e^{\cos x} \sin x} = \frac{-2\cos x}{e^{\cos x}}$.
Hint: $y_1 = 2\tan^{-1} x \cdot \frac{1}{x^2+1}$. $(x^2+1)y_1 = 2\tan^{-1} x$. Differentiate again.
Exam Strategy & Mistake Bank
Common Mistakes
Scoring Tips
Practice Problems (Self-Assessment)
Level 1: Basic (1 Mark Each)
Q1. Find $dy/dx$ if $y = \log_{10} x$.
Q2. Is $f(x) = |x|$ continuous at $x = 0$?
Level 2: Intermediate (2-3 Marks Each)
Q3. Differentiate $(\sin x)^x$ with respect to $x$.
Q4. Find $dy/dx$ if $x = a\cos \theta, y = b\sin \theta$.
Level 3: Advanced (5 Marks Each)
Q5. If $y = \sin^{-1} x$, show that $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$.